
FROM HISTOLOGY TO MACROSCALE FUNCTION 
IN THE HUMAN AMYGDALA 

Hans Auer1, Donna Gift Cabalo1, Raul Rodriguez-Cruces1, Oualid Benkarim1, Casey Paquola2, Jordan 
DeKraker1, Yezhou Wang1, Sofie Valk2,3,4, Boris C. Bernhardt1*, Jessica Royer1*

1Montreal Neurological Institute and Hospital, McGill University, Canada

2Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Germany 

3Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 

4 Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

*co-senior authors

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2024. ; https://doi.org/10.1101/2024.07.09.602743doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602743
http://creativecommons.org/licenses/by-nc-nd/4.0/


Auer et al. 

ABSTRACT

The amygdala is a subcortical region in the mesiotemporal lobe that plays a key role in emotional
and sensory functions. Conventional neuroimaging experiments treat this structure as a single,
uniform  entity,  but  there  is  ample  histological  evidence  for  subregional  heterogeneity  in
microstructure  and  function.  The  current  study  characterized  subregional  structure-function
coupling in the human amygdala, integrating post mortem histology and in vivo MRI at ultrahigh
fields. Core to our work was a novel neuroinformatics approach that leveraged multiscale texture
analysis as well as non-linear dimensionality reduction techniques to identify salient dimensions
of  microstructural  variation  in  a  3D  post  mortem  histological  reconstruction  of  the  human
amygdala.  We observed two axes of subregional variation in this  region, describing inferior-
superior  as  well  as  medio-lateral  trends  in  microstructural  differentiation  that  in  part
recapitulated established atlases of amygdala subnuclei. Translating our approach to in vivo MRI
data acquired at 7 Tesla, we could demonstrate generalizability of these spatial trends across 10
healthy  adults.  We then cross-referenced microstructural  axes  with functional  blood-oxygen-
level  dependent  (BOLD) signal analysis  obtained during task-free conditions,  and revealed a
close association of structural axes with macroscale functional network embedding, notably the
temporo-limbic,  default  mode,  and  sensory-motor  networks.  Our  novel  multiscale  approach
consolidates descriptions of amygdala anatomy and function obtained from histological and in
vivo imaging techniques. 
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INTRODUCTION

The amygdala is a central hub for socio-affective and cognitive functioning (1–3). Over the past
decades, lesion studies in animals and humans have been crucial in our understanding of this
structure’s functional role. Studies performed in animal models have reported significant deficits
in a vast array of social and affective functions following amygdala lesions, including affective
blunting, perturbed social interest and affiliation behaviors, increased aggression, altered sexual
and maternal behaviors as well as fear response to environmental stimuli  (4–6). In addition to
altering social behavior, lesions of this structure in humans have been associated with impaired
decision  making  (7) and  deficits  in  attention  and  arousal  mechanisms  (8),  emphasizing  the
importance of the amygdala in a broad array of functional domains. 

Although earlier work on amygdala function in humans has considered this region as a single,
unitary structure, the distinct roles of its individual subdivisions are now increasingly highlighted
(9–11). Notably, early research on the amygdala in non-human primates has been instrumental in
understanding its intricate structure, function and patterns of anatomical connectivity  (12,13).
This  foundational  study  highlights  the  amygdala’s  different  subdivisions,  most  notably  the
basomedial nucleus (BM), basolateral nucleus (BL), and central nucleus (Ce) (14). Furthermore,
this work describes a dense network between these subdivisions and the prefrontal cortex, most
strongly found in the posterior orbitofrontal and anterior cingulate areas.

In  humans,  qualitative  examinations  of  post  mortem specimens  have  identified  several
subdivisions  within  the  amygdala,  each  with  distinct  cytoarchitectural  characteristics  and
distinguishable connectivity profiles  (15). These individual subnuclei have often been grouped
into  larger  subdivisions,  specifically  centromedian,  laterobasal  and  superficial  regions  (16).
Distinguishable  connectivity  profiles  in  these  subdivisions  have  been  previously  observed
through the analysis of resting-state functional magnetic resonance imaging (rsfMRI)  (13,17).
This non-invasive technique has been instrumental to interrogate grey matter (GM) connectivity
and  map  functional  networks  in  the  brain  by  detecting  coordinated  hemodynamic  signal
fluctuations  across  regions  (18–23).  For  instance,  previous  work  has  shown   synchronized
functional signals between the centromedial (CM) subdivision of the amygdala and middle and
anterior cingulate cortices, frontal cortex, striatum, insula, cerebellum and precuneus, supporting
processes such as attention control and visceral responses  (24–26). Conversely, the laterobasal
(LB) region shows unique connectivity with the inferior and middle temporal gyri and middle
occipital  gyrus  which  have  been  associated  with  associative  processing  of  environmental
information and the integration with self-relevant cognition for decision making (24,27–29). The
superficial (SF) subdivision of the amygdala has rather been associated with social information
processing and social interaction via its unique connectivity to the paracentral lobule, posterior
cingulate cortex, and orbitofrontal cortex  (17,30–33). Given these differences across amygdala
subregions,  combining structural  and functional  analyses  can shed light  on the multi-faceted
contribution  of  the  amygdala  to  affective  and cognitive  functioning by potentially  revealing
variable participation of its subdivisions in different functional networks.

Our current understanding of the amygdala highlights its multidimensional roles, supported by
its  complex anatomy and participation  in  multiple  brain  networks.  However,  microstructural
atlases of this area developed using quantitative techniques are still lacking but are essential for
large-scale investigations of structure-function coupling within this region. Emerging strategies
for  quantitative  segmentations  of  amygdala  subdivisions  have  shown promising  results.  For
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example, a dual-branch convolutional network model trained with features extracted from T1-
weighted  images  could  find  strong  overlap  between  automatically  segmented  labels  and  a
manual  segmentation  of  lateral,  basal,  cortico-superficial  and  centromedial  subregions  (34).
Similarly, a machine learning-based correction model could achieve comparable accuracy using
a multi-atlas segmentation model (35). Despite the promise of these methods, they remain to be
validated in histology (36), which remains a key technique to validate MRI-based features with
access  to  ground-truth  measures  of  cytoarchitecture  (37–39).  Indeed,  regions  with  different
cytoarchitecture often show distinct myelination patterns, which can be observed through various
MRI contrasts. Such myelin-sensitive imaging contrasts can differentiate regions with distinct
intracortical  myeloarchitectonic  profiles,  demonstrating  ties  between  variations  in  cellular
architecture and myelin distribution (40,41).

Our study seeks to elucidate the intricate structure-function relationships within the amygdala by
leveraging  advanced  data-driven  quantitative  methods  and  high-resolution  histology.  Our
approach first leveraged computer vision techniques to map major subdivisions of the amygdala
in  BigBrain  (42),  a  post  mortem,  high-resolution  3D  histological  dataset  providing  direct
measurements  of  brain  cytoarchitecture.  We  translated  this  approach  to  in  vivo MRI  data
acquired at ultra-high fields enabling individual-specific assessments of microstructure-function
coupling in the amygdala.  Harnessing myelin-sensitive contrasts  and multi-echo rsfMRI, our
study identifies a principal axis of microstructural and functional network dissociation within the
human amygdala from a data-driven analysis of its cyto- and myeloarchitecture.  

RESULTS

Data-driven histological analysis of the human amygdala

Using a radiomics approach  (43,44), we computed the four central moments (mean, variance,
skewness,  and kurtosis)  from cell  body staining  intensities  in the amygdala provided by the
BigBrain  dataset  (42,45,46),  Figure  1A).  These  voxel-wise  metrics  were  computed  across
different kernel sizes, with local 3-dimensional neighborhoods ranging from a radius of 2 to 10
voxels.  As  expected,  increasing  kernel  values  produced  smoother  images  for  all  central
moments. Thus fine-grain features were emphasized at small kernel values and coarser features
with larger kernel values.
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Figure 1. Data-driven histological mapping of the human amygdala. (A) The amygdala was segmented from the
100-micron resolution BigBrain dataset using an existing subcortical parcellation (45). Slice orientation of subpanels
containing amygdala images is consistent across all panels in this figure. (B) Leveraging the pyRadiomics package
v3.0.1  (47),  we  built  a  multiscale  histological  feature  bank  of  the  amygdala  capturing  fine-to-coarse  intensity
variations within this structure. Feature values were all normalized to better visualize relative intensity differences.
(C) Matrix representation of the normalized feature bank shown in A. (D) We applied UMAP to this feature bank to
derive  a  low dimensional  embedding  of  amygdala  cytoarchitecture,  defining  a  2-dimensional  coordinate  space
(scatter plot, middle). Colors of the scatter plot represent proximity to axis limits.  (E) Reordering the feature bank
according to each eigenvector (U1 and U2) highlights the underlying variance in each feature captured by UMAP.
(F) Coloring each amygdala voxel according to its corresponding location in the UMAP embedding space partially
recovered  its  anatomical  organization. (G) U1 and U2 were  correlated  to  the three  spatial  axes  and variogram
matching tests  assessed  the statistical  significance  of  each  correlation.  (H) Coloring the embedding space with
openly  available  probabilistic  map  labels  of  the  three  main  amygdala  subregions  showed  that  this  region’s
microstructural architecture could be recovered by UMAP. (I) Ridge plots of the probability values per subregion
also illustrate a characterization of the subregions in U1.

The resulting feature bank showed heterogeneous feature profiles across selected moments and
kernel sizes (Figure 1B). Mean intensities smoothly increased in the ventral to dorsal direction,
culminating in highest intensity values in the dorsal subnucleus regions, and mainly coinciding
with the CM subdivision of the amygdala. Variance, however, was highest along the amygdala’s
borders with the entorhinal cortex and in the amygdala-striatum transition zone. Skewness and
kurtosis maps generally co-varied spatially and both highlight high skewness and kurtosis within
the lateral  nucleus.  Together,  these findings  indicate  that  the selected  features  captured  both
unique and shared characteristics of histological signal variations within the amygdala.

We  then  applied  Uniform  Manifold  Approximation  and  Projection  (UMAP),  a  non-linear
dimensionality  reduction  technique  that  preserves  the  local  and  global  structure  of  high-
dimensional data by projecting it into a lower-dimensional space (48) to the resulting 20-feature
matrix (Figure 1C) to derive a 2-dimensional embedding of amygdala cytoarchitecture (Figure
1D). This approach allowed us to bring the high dimensional histological feature space to a 2D
embedding space composed of every amygdala voxel. As such, amygdala voxels were ordered
along two dimensions, U1 and U2, capturing two axes of variance in amygdala cytoarchitecture.
To better visualize which features may be driving each UMAP dimension, we sorted all input
features  along U1 and U2 (Figure 1E).  Ordering the mean along U1 highlighted increasing
intensity values at all different kernel sizes, where highest intensity voxels co-localized with low
values in U1. While the variance, skewness and kurtosis showed less systematic changes at lower
kernel  values,  patterns became more evident  at  higher kernels.  Indeed, variance and kurtosis
seemed to show an opposite trend to the mean along U1, where higher skewness and kurtosis co-
localized more strongly with positive values of U1 (Supplementary Table S1.1). In contrast,
sorting the feature matrix by U2 showed very similar trends between all features, independent of
its moment and kernel value. More specifically, the highest intensity voxels were mostly found
to show higher values along U2 (Supplementary Table S1.2).  Overall,  these UMAP-driven
visualizations of the histological feature space suggest our dimensionality reduction approach
could recover  moment-specific  (U1) as well  as global  intensity  covariations  across moments
(U2).

To contextualize variations in U1 and U2 values across the amygdala, we computed voxel-wise
correlations between each UMAP component and the amygdala coordinate space. U1 primarily
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varied along the inferior-superior axis (U1: r = 0.8340; U2: r = -0.0137), followed by posterior-
anterior (U1: r = -0.5282; U2: r = 0.2793) and medial-lateral directions (U1: r = 0.1399; U2: r = -
0.2657) (Figure 1G).  Statistical  significance  of  correlations  was assessed using a  variogram
matching approach (49) implemented in the BrainSpace toolbox (50) (Figure 1G). Both UMAP
components  were found to significantly co-vary along the posterior-anterior  axis (U1:  pnull <
0.001; U2:  pnull = 0.002), while only U1 was significantly correlated with the inferior-superior
axis (U1: pnull < 0.001; U2: pnull = 0.909). Neither U1 or U2 were significantly correlated with the
medial-lateral coordinate (U1: pnull = 0.441; U2: pnull = 0.068).

Validation of histological space using independent post mortem dataset

We contextualize  our  data-driven  approach  using  established  probability  maps  of  amygdala
microstructure. These openly available probability maps generated from visual inspection of 10
post  mortem  brains  divide the  amygdala  into  CM, SF,  and LB subregions  (39).  Maps were
thresholded to retain only voxels with highest 5% probability values and binarized. Plotting the
probability values of retained voxels for each subregion showed that UMAP could dissociate
these  established  cytoarchitectural  subdivisions  of  the  amygdala  (Figure  1H).  The  three
subregions  could  be  particularly  segregated  along  the  U1  component.  Indeed,  we  found
significant differences in U1 values across the three amygdala subdivisions (F = 1630.8; pnull <
0.001), while no significant difference was found across U2 (F = 30.3; pnull < 0.581) (Figure 1I).
Together, these findings show our theoretically grounded framework can successfully distinguish
different subregions in the amygdala in a purely data-driven way. Additionally, results could be
replicated  when  analyzing  signals  from  the  right  amygdala,  supporting  the  potential
generalizability of our framework (Supplementary Figure S1).

In vivo generalizability of histological space

We also assess the generalizability of these results to  in vivo myelin-sensitive MRI data. We
leverage quantitative T1 imaging collected at a field strength of 7 Tesla (7T) in 10 unrelated,
healthy participants  (Figure 2A).  These images  offered a resolution of 500um and were run
through a similar  analytical  framework as  the BigBrain dataset.  We used individual-specific
segmentations of the amygdala obtained with VolBrain  (51). Once again, a feature bank was
rendered from the same central moments, specifically mean, variance, skewness, and kurtosis.
Kernel sizes varied from size 1-5, resulting in 20 distinct feature maps (Figure 2A). The new
feature  bank was  again  submitted  to  UMAP for  dimensionality  reduction  (Figure  2A),  and
values of each component were plotted back to their respective coordinates in the amygdala. 

We  then  compared  spatial  variations  of  the  two  UMAP  components  uncovered  in  each
participant with the UMAP space derived from the BigBrain dataset. When examining the spatial
layout of the UMAP components, we find similar neuroanatomical trends in all subjects to those
found  in  histology  (Figure  2B).  Notably,  the  U1  vector  of  all  subjects  are  found  to  be
significantly  correlated  to  the  inferior-superior  axis  from  a  variogram  matching  test
(Supplementary Table S2.1), similarly to BigBrain, suggesting the potential for this framework
to capture important structural features in histology as well as in vivo MRI. We also find that the
medial-lateral axis correlations to U1 across all subjects are consistent from the variogram test
(Supplementary  Table  S2.1).  The  spatial  layout  of  U2,  on  the  other  hand,  showed  lower
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consistency across participants, as none of the coordinate axes were significantly correlated with
U2 in more than 7/10 subjects (Supplementary Table S2.2). In sum, we identify a single axis
(U1)  able  to  pick  up  on  important  amygdala  microstructural  features  in  both  post  mortem
histology and in vivo markers of GM microstructure.

Figure 2. Translating amygdala histological space to in vivo, ultra high-resolution, myelin-sensitive MRI. (A)
We segmented the left and right amygdalae of individual subjects from quantitative T1 (qT1) scans, and applied the
same  framework  as  developed  in  post  mortem imaging  to  derive  subject-specific,  in  vivo representations  of
amygdala  microstructure.  (B) Correlation  values  between  the  UMAP components  (U1  and  U2)  and  the  three
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coordinate axes of the 10 MRI subjects were computed in MNI152 space and then contrasted with the correlation
values found in the histological data (BigBrain transformed to MNI152 space). 

Association with macroscale function

We next sought to investigate associations between amygdala microstructural organization and
this  region’s  macroscale  functional  organization  across  subjects.  Given  U1’s  strong  spatial
consistency  across  participants  and  microstructural  modalities,  we  generated  subject-specific
masks segregating this component’s highest and lowest 25% of values within the amygdala for
each  participant.  This  resulted  in  two  distinct  regions  of  interest,  reflecting  the  anchors  of
maximal microstructural dissociation within the amygdala for each participant, from which we
could extract corresponding functional activity recorded at rest (Figure 3A). 

Voxel-wise  rsfMRI  timeseries  were  averaged  within  each  microstructural  subregion  and
correlated to vertex-wise cortical timeseries. A linear mixed effect model comparing amygdalo-
cortical  connectivity  profiles  between  both  subregions  showed  that  functional  network
affiliations  significantly  differed  across  U1  subregions,  with  stronger  connectivity  observed
between the superior  portions of the amygdala (top 25% U1 values)  and the prefrontal  lobe
(Figure  3B).  Stratifying  functional  connectivity  patterns  of  each  amygdala  subregion to  the
cortex according to established intrinsic functional network communities further highlighted the
relatively stronger connectivity of the superior subregions to all cortical networks, particularly
the limbic, frontoparietal, and default mode networks (Figure 3C). Meta-analytical decoding of
subregional connectivity profiles using NeuroSynth (52) emphasized the functional dissociation
in connectivity patterns of both microstructurally-defined areas. This analysis showed that the
functional  connectivity  pattern of the region with highest 25% U1 values was most strongly
associated  with  terms  relating  to  autobiographical  memory  (‘autobiographical’  and
‘autobiographical memory’), while the other seed region’s connectivity profile overlapped with
activation patterns related to emotional input (‘happy faces’, ‘neutral faces’ and ‘fearful faces’)
(Figure 3C). Furthermore, decoding our statistical effects map (Region 1 connectivity > Region
2 connectivity) highlighted associations with terms relating to the self, introspection, and reward
(‘self referential’, ’referential’, ‘moral’, ‘autobiographical’, ‘smoking’, ‘craving’). Collectively,
these  findings  show  that  our  theoretically-grounded  approach,  developed  in  histology  and
generalizable to microstructurally-sensitive in vivo MRI data, can delineate distinct functional
network embeddings in the human amygdala. 
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Figure 3. Functional network mapping of amygdala microstructural subregions. (A) We isolated the rsfMRI
timeseries  of  two  amygdala  subregions,  defined  from  subject-specific  U1  topography,  as  well  as  the  whole
amygdala.  (B) We  computed  the  functional  connectivity  of  both  amygdala  subregions,  and  project  resulting
correlations to the cortex. We further demonstrate the differences in connectivity patterns between both subregions
(t-value)  and highlight  the regions  with significant  differences  (pFWE<0.05).  (C)  Left:  The activation  patterns
illustrated in (B, top) were averaged within intrinsic functional communities defined by Yeo, Krienen, et al. (2011).
Right:  Meta-analytic  decoding  of  functional  connectivity  patterns  of  both  amygdala  subregions  and  the  whole
amygdala dissociated cognitive and affective functional affiliations of this region.
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DISCUSSION 

The  amygdala  is  a  crucial  structure  for  several  aspects  of  cognitive  and  socio-affective
functioning  (3). These functions are supported by complex connectivity patterns to other brain
regions, stemming from distinct subnuclei with unique microstructural properties (15). However,
current investigations of structure-function coupling in the amygdala are limited by a lack of
datasets  and tools  for  individualized  and observer-independent  delineation  of  its  subregions.
Indeed, the strong inter-individual variability of its structural and functional organization (16,53)
motivates more personalized approaches to reliably study the microstructural  determinants  of
amygdala function and connectivity. In the current paper, we present a data-driven exploration of
subcortical cytoarchitecture applied to the human amygdala. We could translate this approach to
microstructurally-sensitive in  vivo  MRI data  as  a  bridge,  to  ultimately  examine  associations
between microstructural subregions and functional networks. As such, the present work defines a
quantitative and integrated account of the amygdala’s microstructural composition and functional
organization. In doing so, our approach sets the stage for novel investigations spanning other
subcortico-cortical  systems,  and  shows  potential  to  deliver  new  insights  into  brain-wide
principles  of  structure-function  coupling  and  how  this  interplay  may  be  altered  in  clinical
populations. 

The proposed framework aimed to delineate amygdala subnuclear organization by leveraging a
multiscale  texture  processing  pipeline  designed  to  retain  finer  and  coarser  regional
cytoarchitectonic  properties.  We  specifically  harness  radiomics,  a  field  with  established
diagnostic and prognostic potential in medical imaging (54). Feature selection in our study was
motivated by previous work conducted at the level of the neocortex (36,43) and focused on the
four central moments, specifically, the mean, variance, skewness, and kurtosis of voxel subsets,
to  reflect  regional  texture  variability  related  to  amygdala  cytoarchitecture.  In  contrast  to
qualitative approaches based on single features, such as investigations based on the detection of
specific  cell  types  (55),  our  pipeline  captures  several  aspects  of  amygdala  microstructure
informing non-linear  dimensionality  reduction methods applied to a high-dimensional  feature
space.  The  resulting  components  U1  and  U2  reflected  complex  combinations  of  central
moments, with U1 being mainly scaled to mean intensities and U2 being associated to weighted
combinations  of  the  different  moments.  Crucially,  we  validated  this  coordinate  space  using
openly available maps of amygdalar subdivisions from histological examinations performed by
expert neuroanatomists  (39). This approach complements previous work harnessing subnuclear
parcellations of the amygdala derived from visual inspections of post mortem specimens  (15)
and deep-learning algorithms applied to in vivo MRI data (34,56,57) to contextualize variations
in  functional  connectivity  profiles  within  this  region.  Indeed,  a  significant  advantage  of  our
framework lies  in  the ease with which it  may be applied to  new datasets.  For instance,  our
method overcomes the time-consuming nature and high level of expertise required for precise
manual subnuclear segmentations.  Furthermore,  this approach circumvents the need for large
datasets required to validate deep learning-based applications, a particular concern in the case of
histological  data  which  are  often  limited  to  few  or  even  single  specimens.  However,  it  is
important to note that both datasets analyzed in this work are limited by their small sample size
(n=1 for BigBrain and n=10 for MICA-PNI). We speculate that the signal variations captured by
U2 may be sensitive to artifacts or subject-specific sources of variance, potentially explaining
why it  was not consistent  between subjects and modalities.  Moving forward,  this  hypothesis
could be assessed in future work via the analysis of larger histological and neuroimaging datasets
to better track recurring features picked up by U2 or the association of these unique topographies
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with  behavioral  markers. Overall,  the  proposed  framework  lays  the  groundwork  for  future
investigations  of  subcortical  structure-function  coupling  by anchoring  connectivity  and task-
related activations within measurements of regional microarchitecture. 

The  present  works  described  a  continuous  coordinate  space  of  amygdala  subregional
microstructure. However, this region has been previously described as consisting of three main
subdivisions: LB, CM, and SF, each composed of smaller subnuclei with distinct connectivity
patterns and functions (9,10,16,58). These subregions are largely conserved between humans and
monkeys, reflecting their evolutionary relationship. However, there are still some considerable
differences such as in the SF subregion, where its description in monkeys additionally contains
the lateral  olfactory tract (LOT)  (59). Although qualitative histological accounts have indeed
delineated  multiple  subunits  within these general  regions,  the present  work focuses  on three
subdivisions (16). To account for resolution disparities when translating our findings to in vivo
MRI data. The LB subdivision includes the basomedial nucleus (Bm), basolateral nucleus (BL),
lateral  nucleus  (LA)  and  paralaminar  nucleus  (PL).  Moving  medially,  the  CM  subdivision
includes the central (Ce) and medial nuclei (Me), while the SF subdivision includes the anterior
amygdaloid  area  (AAA),  amygdalohippocampal  transition  area  (AHi),  amygdalopiriform
transition area (APir), and ventral cortical nucleus (VCo) (60). However, disagreement on the
precise attribution of nuclei to broader subdivisions motivated our investigations of probabilistic
subunits of the amygdala (15). The development of new tools to segment amygdala subnuclei in
vivo opens opportunities for future work to further validate our framework at the precision of
these nuclei within subjects  (57). We selected UMAP for its potential to recover this nuclear
architecture  via  the  identification  of  discrete  clusters  of  microstructural  similarity  within  the
amygdala. While these dimensions partially align with traditional concepts of arealization, they
also provide a complementary, graded representation of amygdala microarchitecture. Although
our  framework  leverages  ultra-high  resolution  histological  and  myelin-sensitive  MRI,  the
inherent spatial autocorrelation of feature intensities in these modalities may have emphasized
the continuous signal variations we identify within the amygdala and hindered the discovery of
discrete boundaries between known subdivisions. We address this limitation by benchmarking
U1 and U2 distributions against validated probabilistic maps of major amygdala subdivisions
(16,39), enabling us to recover the established biological  validity of its  nuclear organization.
Furthermore,  this  approach allowed us to derive discrete  clusters of maximal  microstructural
differentiation within the amygdala; these clusters served as seed regions for microstructurally-
grounded  and  individualized  investigations  of  the  functional  connectome  embedding  of
amygdala subregions. Following an inferior-superior and medial-lateral axis of differentiation in
both  post mortem histology and myelin-sensitive  in vivo MRI, this bipartite division is in line
with previous work investigating the structural connectivity of the amygdala using diffusion-
weighted imaging and probabilistic tractography  (61) as well as functional connectivity from
rsfMRI (62). Indeed, both modalities highlight the existence of two distinct clusters segregating
amygdala  connectivity  to  temporopolar  and  orbitofrontal  cortices.  These  findings  mirror
macroscale associations seen in the neocortex between microstructure and connectivity, which
emphasize  close  correspondence  between  the  strength  of  interareal  connectivity  and
microstructural  similarity  (63–65).  In  the  case  of  the  amygdala,  our  framework  could  thus
recover  these  distinct  anatomical  pathways  from  a  data-driven,  texture-based  analysis  of
microarchitectural  information  alone,  supporting  the  potential  of  such  contrasts  to  provide
insights into the large-scale network embeddings of subcortical systems.
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In  line  with  this  suggested  association  between  amygdala  microarchitecture  and  functional
connectivity,  we  conclude  our  analyses  by  leveraging  subject-specific  representations  of
amygdala  microstructure  to  map  large-scale  variations  in  its  functional  connectivity  to  the
neocortex.  We  isolated and  contrasted the  highest  and  lowest  25%  of  U1  values  for  each
participant to define an individualized bipartite parcellation of the amygdala.  Qualitatively, we
found that the subregion defined by the highest 25% of U1 values mainly overlapped with what
is commonly defined as the superficial and centromedial subregions, whereas the lowest 25% U1
values  subregion overlapped  mostly with  the  laterobasal  division.  Interestingly,  CM and SF
characterized  subregions  showed  significantly  stronger  functional  connectivity  to  prefrontal
structures. This finding aligns with previous work demonstrating unique affiliations between the
CM subregion and anterior  cingulate and frontal  cortices  (25,26), as well  as between the SF
subregion and the orbitofrontal cortex (17,24,30,66). Although these findings are promising, we
also observe considerable overlap between functional connectivity networks of both our defined
subregions.  Indeed,  the  amygdala  is  a  relatively  small  structure,  leading  to  likely
interconnectivity  between  its  subregions  and  locally  high  signal  autocorrelation.  Functional
connectivity and microstructure in the amygdala are certainly related, however previous work
suggests they do not perfectly overlap (10). In addition, this region is affected by relatively low
signal-to-noise  ratio  (SNR),  as  is  observed  in  broader  temporobasal  and  mesiotemporal
territories.  Decoding  of  subregional  functional connectivity  results  indicated  possible
dissociations  in cognitive  (e.g., memory)  and  affective  (e.g., emotional  face  processing)
functions of the amygdala,  echoing previous accounts of  this region’s functional specialization
and  subregional  segregation  of  associative  processing  of  emotional  stimuli. Notably,  these
findings link the functional connectivity profile of a subregion partially co-localizing with LB to
emotional  face  processing.  The  LB subregion  has  been  previously  linked  to  associative
processing related to  the integration of sensory information  (10,24,27–29), which is consistent
with the association with visual emotional information processing identified in the present work.
For the right amygdala, dissociation in functional connectivity patterns were more subtle, leading
to overall similar functional decoding across the two clusters (Figure S2). Overall, our findings
suggest  that  this  microstructurally-grounded  delineation  of  U1  subregions  could  capture
dissociations  in  their  respective  functional  associations  and  potentially  with  fear-related
processes.  These  results  echo  previous  chemoarchitectural  descriptions  of  the  amygdala
involving the 5-HT receptor, which has been closely associated with fear responses in mice and
humans  (31,67).  Indeed,  this  receptor  is  expressed  in  lower  densities  in  the  CM  region,
overlapping with our U1 subregions that show lower connectivity to regions involved in fear-
related responses.  The present work thus offers an important  step towards a more integrated
account of the amygdala’s microstructural composition and functional organization.

By harnessing an openly available arsenal of tools and methods from histology, radiomics, and
neuroinformatics,  we  define  a  comprehensive  framework  enhancing  our  understanding  of
individual differences in amygdala organization. Our findings contribute to a growing body of
research emphasizing the importance of integrating structural and functional data to elucidate the
complex roles  of the amygdala  in both health  and disease.  This  multimodal,  multiscale,  and
subject-specific approach not only advances our knowledge of the amygdala's microstructural
and  functional  intricacies  but  also  offers  a  valuable  resource  for  future  studies  exploring
subcortical structures and their implications in various neurological and psychiatric conditions.
This  integrated  perspective  is  essential  for  developing  more  precise  and  personalized
interventions for disorders associated with amygdala dysfunction.
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METHODS

Histological data acquisition and pre-processing

Cell-body-staining  intensity  of  the  amygdala  was  obtained  from  the  BigBrain  dataset  (42).
BigBrain is an ultra-high–resolution Merker-stained 3D volumetric histological reconstruction of
a  post  mortem human  brain  from  a  65-year-old  male,  made  available  on  the  open-access
BigBrain repository (bigbrain.loris.ca). The post mortem brain was paraffin-embedded, coronally
sliced into 7,400 20-μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem sections, silver-stained for cell bodies (9), and digitized. As such, image
intensity values in this dataset provide direct measurements of brain cytoarchitecture. Following
manual inspection for artifacts, automatic repair procedures were applied, involving nonlinear
alignment  to  a  post  mortem  MRI,  intensity  normalization,  and  block  averaging  (68).  3D
reconstruction  was  implemented  with  a  successive  coarse-to-fine  hierarchical  procedure.  All
main analyses were performed using the 100μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem isovoxel resolution dataset.

Amygdala segmentation and subdivision mapping

The left and right amygdalae were isolated from the BigBrain volume using an existing manual
segmentation  of  left  and right  subcortical  structures  (45).  This  segmentation  was  warped  to
BigBrain histological space from a standard template space (ICBM2009b symmetric (69)) using
openly  available  co-registration  strategies  aggregated  in  the  BigBrainWarp  toolbox  (45,46).
Notably,  these approaches were optimized to improve the alignment  of subcortical  structures
(45). After registering the subcortical atlas to histological space and resampling the segmentation
to an isovoxel resolution of 100μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem, we generated unique binary masks isolating the left and right
amygdalae and performed manual corrections on each mask (i.e., improving smoothness and
continuity of the mask borders), and eroded the mask by five voxels to provide a conservative
estimate of regional borders. All main analyses were performed on left hemisphere data only,
while the right hemisphere served as a validation dataset (Supplementary Figure S1).

To  contextualize  our  data-driven  histological  mapping  of  the  amygdala  (see  below),  we
leveraged  openly  available  probabilistic  maps  of  amygdala  subnuclei  derived  from  visual
inspections of post mortem tissue specimens performed by expert neuroanatomists (15,39). The
borders  of  amygdala  subdivisions  were  traced  in  10  post  mortem brains.  Following  3D
reconstruction and alignment of each post mortem brain to a common template space, voxel-wise
probabilistic maps for each subregion were computed by quantifying the consistency of label
assignments across the 10 donor brains. For the present work, all available probabilistic maps of
the amygdala,  including large subdivision groups encompassing multiple  amygdala subnuclei
(i.e.,  CM, LB, and SF subdivisions)  were accessed from the EBrains  repository (v8.2)  (39).
Regional  probabilistic  maps  were  warped  from  ICBM2009c  asymmetric  space  to  the
ICBM2009b  symmetric  template  using  the  SyN  algorithm  implemented  in  the  Advanced
Normalization  Tools  software  (ANTs)  (70).  Each  subregional  probabilistic  map  was
subsequently warped to BigBrain histological space  (45,46) and was resampled to an isovoxel
resolution of 100μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem. We then generated a maximum probability map to parcellate the amygdala
into its subdivisions by retaining the voxels with the highest 5% probability values of belonging
to each subdivision.
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Histological feature extraction

We built a histological feature bank of amygdala cell-body-staining using methods from the field
of  radiomics  (71).  Our  approach  for  feature  selection  was  also  inspired  by  quantitative
cytoarchitectural analyses developed in foundational neuroanatomical studies (43), involving the
parameterization  of  intensity  profiles  with  four  central  moments  to  characterize  regional
cytoarchitecture across the neocortex. In the present work, we computed these same four central
moments (i.e.,  mean, variance, skewness, and kurtosis) of cell body staining intensities in the
amygdala to characterize intensity differences across this region. We used pyRadiomics v3.0.1
(47)  to compute voxel-based maps for each of the selected first-order features, varying the size
of 3D-feature extraction to a voxel neighbourhood of 500μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem to 2100μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem (in 400μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem increments).
Outlier  values  (>  1  standard  deviation  from the  mean  intensity  value)  were  excluded  from
moment calculations at each kernel size.  This resulted in 20 distinct feature maps, capturing
variations in intensity distributions within the amygdala at finer and coarser scales. These feature
maps were normalized by z-scoring each feature at each kernel size.

Dimensionality reduction of histological features

To  capture  and  visualize  the  underlying  structure  of  amygdala  cytoarchitecture,  we  applied
UMAP to our normalized histological feature bank (48). This algorithm was selected over other
compression approaches for its scalability in the analysis of large datasets, as well as its ability to
preserve both local and global data structure (72). Two UMAP hyperparameters controlling the
size of the local neighbourhood as well as the local density of data points were kept at their
default settings (nneighbours=15, distmin=0.1). The resulting low-dimensional embedding of higher-
order histological features was contextualized in relation to the amygdala’s  x,  y, and  z voxel
coordinate space, and validated against previously described maximum probability map of the
amygdala.

In vivo MRI data acquisition

After  establishing  this  framework  with  post  mortem  histological  data,  we  assessed  its
generalizability to  in vivo, myelin-sensitive MRI contrasts. We capitalized on quantitative T1
(qT1) relaxometry data collected in 10 participants at a field strength of 7 Tesla. This sequence
has  been  shown to  be  sensitive  to  cortical  myeloarchitecture  (73–75),  and  could  thus  offer
complementary insights into the microstructural organization of the amygdala. Our cohort of 10
adult participants (5 men, mean ± SD age = 27.3 ± 5.71 years) were all healthy, with no history
of neurological or psychiatric conditions (76).

Scans were acquired at the McConnell Brain Imaging Centre (BIC) of the Montreal Neurological
Institute and Hospital on a 7T Terra Siemens Magnetom scanner equipped with a 32-receive and
8-transmit  channel  head coil.  Synthetic  T1-weighted  (UNI)  and  quantitative  T1 relaxometry
(qT1)  data  were  acquired  using  a  3D-MP2RAGE sequence  (0.5  mm isovoxels,  320 sagittal
slices, TR=5170 ms, TE=2.44 ms, TI1=1000 ms, TI2=3200 ms, flip angle1=4°, iPAT=3, partial
Fourier=6/8  flip  angle2=4°,  FOV=260×260  mm2).  We  combined  two  inversion  images  to
minimize sensitivity to B1 inhomogeneities and optimize reliability (77,78). rsfMRI scans were
acquired  using a  multi-echo,  2D echo-planar  imaging  sequence  (1.9mm isovoxels,  75  slices
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oriented to AT-PC-31 degrees, TR=1690 ms, TE1=10.8 ms, TE2=27.3 ms, TE3=43.8 ms, flip
angle=67°,  multiband  factor=3).  The  rsfMRI  scan  lasted  ~6  minutes,  and  participants  were
instructed to fixate a cross displayed in the center of the screen, to clear their mind, and not fall
asleep.

Multimodal MRI processing and analysis

a) Anatomical segmentation and co-registration. Image processing leading to the extraction of
cortical and subcortical features and their registration to surface templates was performed via
micapipe  v0.2.3,  an  open  multimodal  MRI  processing  and  data  fusion  pipeline
(github.com/MICA-MNI/micapipe/)  (79).  The amygdala  was automatically  segmented  on the
T1w images with volBrain v3, in every subject (51). Cortical surface models were generated
from MP2RAGE-derived UNI images using FastSurfer 2.0.0 (80,81). Surface extractions were
inspected and corrected for segmentation errors via placement of manual edits. Native-surface
space cortical features were registered to the fs-LR template surface using workbench tools (82).

b)  qT1  image  processing  and  analysis.  Automated,  individual-specific  segmentations  of  the
amygdala  were obtained with VolBrain,  and were manually  inspected and corrected  prior to
image processing. In a similar fashion to the histological data, a feature bank was rendered from
the same central moments, although kernel sizes varied from size 1-5, rather than 2-10 in order to
take  into  account  the  difference  in  image  resolution  between  the  two datasets.  Thus,  voxel
neighborhoods ranged from 1500μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem to 5500μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem (in 1000μm sections, silver-stained for cell bodies (9), and digitized. As such, imagem increments). This resulted in 20
distinct feature maps, capturing variations in intensity distributions within the amygdala at finer
and coarser scales.  The new feature bank was again submitted  to UMAP for dimensionality
reduction,  independently  for  all  10  participants.  This  procedure  generated  a  2-dimensional
feature space unique to each participant recapitulating the organization of the amygdala. We then
plotted the values generated in our UMAP space onto their original coordinate points inside the
amygdala in the original qT1 space of each subject for further visualization and analysis.

To finally compare subject-specific in vivo MRI findings to our previously defined histological
components, we first co-registered each subject’s qT1 scan to the ICBM152 template and applied
the resulting transform to each participant’s U1 map. We applied existing transformations to
bring the histological-space U1 to the same template space (45,46). This allowed us to contrast
the UMAP components of all 10 subjects and BigBrain, along x, y, and z coordinate axes.

c) rsfMRI image processing and analysis. Processing employed micapipe v.0.2.3  (79), which
combines functions from AFNI (83), FastSurfer (80,81,84), workbench command (85), and FSL
(86). Images were reoriented, as well as motion and distortion corrected. Motion correction was
performed by registering each timepoint volume to the mean volume across timepoints, while
distortion correction utilized main phase and reverse phase encoded field maps. Leveraging our
multi-echo  acquisition  protocol,  nuisance  variable  signals  were  removed  with  tedana  (87).
Volumetric timeseries were averaged for registration to native FastSurfer space using boundary-
based registration (88), and mapped to individual surfaces using trilinear interpolation. Cortical
timeseries were mapped to the hemisphere-matched fs-LR template using workbench tools then
spatially  smoothed  with  a  10mm Gaussian  kernel.  Surface-  and  template-mapped  cortical
timeseries were corrected for motion spikes using linear regression of motion outliers provided
by  FSL.  Functional  and  anatomical  spaces  were  co-registered  using  label-based  affine
registration (89) and the SyN algorithm available in ANTs (90).
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Functional network mapping of amygdala microstructural subregions

We averaged the rsfMRI timeseries  within amygdala  subregions  defined by the  highest  and
lowest  25%  of  values  in  each  participant’s  own  qT1-derived  U1  component.  Functional
connectivity of each amygdala subregion to the rest of the cortex was determined using Pearson
correlation  between  the  timeseries  of  each  amygdala  subregion  and  each  cortical  vertex.
Resulting  correlation  coefficients  underwent  Fisher  R-to-Z  transformation  to  increase  the
normality of the distribution of functional connectivity values.

A  mixed  effects  model  implemented  with  the  BrainStat  toolbox  (91) assessed  differences
between the cortical connectivity profiles of each U1 subregion, while considering age and sex
and fixed effects and subject identity as a random effect. We corrected findings for family-wise
errors (FWE) using random field theory (pFWE < 0.05; cluster-defining threshold (CDT) = 0.01).
We further contextualized differences in each connectivity map using decoding functions from
NeuroSynth  (52) that  are  made  available  via  BrainStat  (91),  by  contrasting  the  overall
connectivity profile of the amygdala to those of each of its microstructurally-defined subregions.
First,  we  divided  subregional  amygdala-cortical  connectivity  profiles  into  seven  established
functional network communities  (19) and contrasted their average connectivity strength across
each network. Meta-analytic functional decoding of the connectivity patterns of both amygdala
subregions and the whole amygdala also highlighted different cognitive affiliations of each seed.
Spatial correlations between the amygdala’s cortical connectivity profile and spatial activation
maps associated with each term allowed us to retain ten terms associated with different cognitive
domains. We then compared the association between the activation patterns associated with each
of the retained terms and the cortical connectivity profiles of each amygdala U1 subregion.  

Data and code availability 

Analysis  notebooks  related  to  this  project  are  available  on  GitHub  (github.com/MICA-
MNI/  micaopen/AmygdalaUMAP  ). BigBrain data are available on (osf.io/xkqb3/), 7T data are
available on the Open Science Framework (  osf.io/mhq3f/  ). 
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